Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 129
1.
Heliyon ; 10(9): e29926, 2024 May 15.
Article En | MEDLINE | ID: mdl-38698971

Aims: This study aimed to evaluate the global research trend in the prevention and treatment of cardiotoxicity caused by anthracyclines from 2000 to 2023, and to explore international cooperation, research hotspots, and frontier trends. Methods: The articles on the prevention and treatment of anthracycline-induced cardiotoxicity published from 2000 to 2023 were searched by Web of Science. The bibliometrics software CiteSpace was used for visual analysis of countries, institutions, journals, authors, cited authors, cited references, and keywords. Results: This study analyzed the current status of global research on the prevention and treatment of cardiotoxicity caused by anthracyclines. A total of 3,669 papers were searched and 851 studies were included. The number of publications increased gradually throughout the years. Cardiovascular Toxicology (15) is the journal with the most publications. Circulation (547) ranked first among cited journals. In this field, the country with the most publications is the United States (229), and the institution with the most publications is Charles Univ Prague (18). In the analysis of the authors, Tomas S (10) ranked first. Cardinale D (262) ranked first among cited authors. In the ranking of cited literature frequency, the article ranked first is "Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy" (121). The keywords "heart failure" (215) and "oxidative stress" (212) were the most frequent. "Enalapril", "inflammation", "cell death", "NF-κB" and "Nrf2" were the advanced research contents in 2019-2023. Conclusions: This study provided valuable information for cardio-oncology researchers to identify potential collaborators and institutions, discover hot topics, and explore new research directions. The prevention and treatment of anthracycline-induced cardiotoxicity focuses on early detection and timely treatment. The results of the current clinical studies on the treatment of anthracycline-induced cardiotoxicity are contradictory, and more studies are needed to provide more reliable clinical evidence in the future.

2.
BMC Genomics ; 25(1): 316, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38549050

BACKGROUND: Alfalfa is a perennial forage crop of high importance, but its cultivation is often affected by drought stress. Currently, the investigation of drought-related small RNAs is a popular research topic to uncover plant drought resistance mechanisms. Among these small RNAs, microRNA166 (miR166) is associated with drought in numerous plant species. Initial small RNA sequencing studies have shown that miR166 is highly responsive to exogenous nitric oxide (NO) and drought. Therefore, analyzing the expression of Msa-miR166 under nitric oxide and drought treatment is significant. RESULT: Bioinformatics analysis revealed that the miR166 family is widely distributed among plants, ranging from mosses to eudicots, with significant distribution differences between species. The evolutionary degree of Msa-miR166s is highly similar to that of Barrel medic (Medicago truncatula) and Soybean (Glycine max), but significantly different from the model plant Arabidopsis (Arabidopsis thaliana). It is suggested that there are no significant differences in miR166s within the species, and members of Msa-miR166s can form a typical stem-loop. The lowest level of exogenous nitric oxide was observed in Msa-miR166s under drought stress, followed by individual drought, and the highest level was observed after removing endogenous nitric oxide. CONCLUSION: In response to short-term drought, Msa-miR166s down-regulate expression in alfalfa (Medicago sativa L.). Exogenous nitric oxide can reduce the expression of Msa-miR166s in response to short-term drought. These findings suggest that Msa-miR166e-5p is responsive to environmental changes. The expression levels of target genes showed an opposite trend to Msa-miR166s, verifying the accuracy of Degradome sequencing in the early stage. This suggests that alfalfa experiences drought stress when regulated by exogenous nitric oxide, targeting HD ZIP-III, FRI, and CoA ligase genes. Additionally, the expression of Msa-miR166s in response to drought stress varies between leaves and roots, indicating spatiotemporal specificity.


Arabidopsis Proteins , Arabidopsis , MicroRNAs , Medicago sativa/genetics , Plant Proteins/genetics , Nitric Oxide/metabolism , Droughts , Base Sequence , Arabidopsis/genetics , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Arabidopsis Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
3.
BMC Genomics ; 25(1): 229, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429670

BACKGROUND: Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT: By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION: In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.


MicroRNAs , Seedlings , Seedlings/genetics , Seedlings/metabolism , Medicago sativa/genetics , Nitric Oxide/metabolism , Droughts , MicroRNAs/genetics , MicroRNAs/metabolism , Hormones/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
4.
Chin Med ; 19(1): 1, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38163901

Despite continued advances in prevention and treatment strategies, cardiovascular diseases (CVDs) remain the leading cause of death worldwide, and more effective therapeutic methods are urgently needed. Polygonatum is a traditional Chinese herbal medicine with a variety of pharmacological applications and biological activities, such as antioxidant activity, anti-inflammation, antibacterial effect, immune-enhancing effect, glucose regulation, lipid-lowering and anti-atherosclerotic effects, treatment of diabetes and anticancer effect. There has also been more and more evidence to support the cardioprotective effect of Polygonatum in recent years. However, up to now, there has been a lack of comprehensive studies on the active ingredients and their pharmacotoxicological effects related to cardiovascular diseases. Therefore, the main active components of Polygonatum (including Polysaccharides, Flavonoids, Saponins) and their biological activities were firstly reviewed in this paper. Furthermore, we summarized the pharmacological effects of Polygonatum's active components in preventing and treating CVDs, and its relevant toxicological investigations. Finally, we emphasize the potential of Polygonatum in the prevention and treatment of CVDs.

5.
RSC Adv ; 14(6): 3757-3760, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38268541

An efficient method has been developed for reacting dialkyl H-phosphonates or diarylphosphine oxides with alcohols for constructing C-P bonds. This reaction was catalyzed by Lewis acid and involved nucleophilic substitution. A series of diphenylphosphonates and diphenylphosphine oxides were obtained, from the phosphorylation of alcohols, with good-to-excellent yields.

6.
J Org Chem ; 88(23): 16216-16228, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37967376

An effective and economical acid-promoted three-component reaction for the construction of C-P and C-C bonds for the synthesis of γ-ketophosphine oxides with water as the only byproduct was developed. Detailed mechanistic experiments confirmed that the reaction proceeds by phospha-aldol elimination, in which a benzylic carbocation is generated from the phosphorylation of aldehydes, which then reacts with ketone enolates under acidic conditions.

7.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article En | MEDLINE | ID: mdl-38003311

Brassinosteroids (BRs), the sixth major phytohormone, can regulate plant salt tolerance. Many studies have been conducted to investigate the effects of BRs on plant salt tolerance, generating a large amount of research data. However, a meta-analysis on regulating plant salt tolerance by BRs has not been reported. Therefore, this study conducted a meta-analysis of 132 studies to elucidate the most critical physiological mechanisms by which BRs regulate salt tolerance in plants from a higher dimension and analyze the best ways to apply BRs. The results showed that exogenous BRs significantly increased germination, plant height, root length, and biomass (total dry weight was the largest) of plants under salt stress. There was no significant difference between seed soaking and foliar spraying. However, the medium method (germination stage) and stem application (seedling stage) may be more effective in improving plant salt tolerance. BRs only inhibit germination in Solanaceae. BRs (2 µM), seed soaking for 12 h, and simultaneous treatment with salt stress had the highest germination rate. At the seedling stage, the activity of Brassinolide (C28H48O6) was higher than that of Homobrassinolide (C29H50O6), and post-treatment, BRs (0.02 µM) was the best solution. BRs are unsuitable for use in the germination stage when Sodium chloride is below 100 mM, and the effect is also weakest in the seedling stage. Exogenous BRs promoted photosynthesis, and antioxidant enzyme activity increased the accumulation of osmoregulatory and antioxidant substances and reduced the content of harmful substances and Na+, thus reducing cell damage and improving plant salt tolerance. BRs induced the most soluble protein, chlorophyll a, stomatal conductance, net photosynthetic rate, Glutathione peroxidase, and root-Ca2+, with BRs causing Ca2+ signals in roots probably constituting the most important reason for improving salt tolerance. BRs first promoted the accumulation of Ca2+ in roots, which increased the content of the above vital substances and enzyme activities through the Ca2+ signaling pathway, improving plant salt tolerance.


Antioxidants , Brassinosteroids , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Salt Tolerance , Chlorophyll A/metabolism , Seedlings/metabolism , Plant Roots
8.
BMC Plant Biol ; 23(1): 503, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37858063

BACKGROUND: Quinoa is an important economic crop, drought is one of the key factors affecting quinoa yield. Clarifying the adaptation strategy of quinoa to drought is conducive to cultivating drought-tolerant varieties. At present, the study of quinoa on drought stress-related metabolism and the identification of related metabolites are still unknown. As a direct feature of biochemical functions, metabolites can reveal the biochemical pathways involved in drought response. RESULT: Here, we studied the physiological and metabolic responses of drought-tolerant genotype L1 and sensitive genotype HZ1. Under drought conditions, L1 had higher osmotic adjustment ability and stronger root activity than HZ1, and the relative water content of L1 was also higher than that of HZ1. In addition, the barrier-to- sea ratio of L1 is significantly higher than that of HZ1. Using untargeted metabolic analysis, a total of 523, 406, 301 and 272 differential metabolites were identified in L1 and HZ1 on day 3 and day 9 of drought stress. The key metabolites (amino acids, nucleotides, peptides, organic acids, lipids and carbohydrates) accumulated differently in quinoa leaves. and HZ1 had the most DEMs in Glycerophospholipid metabolism (ko00564) and ABC transporters (ko02010) pathways. CONCLUSION: These results provide a reference for characterizing the response mechanism of quinoa to drought and improving the drought tolerance of quinoa.


Chenopodium quinoa , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Droughts , Metabolomics/methods , Genotype , Water/metabolism
9.
Int J Biol Macromol ; 253(Pt 8): 127582, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37866580

Quinoa is a crop with high nutritional value and strong stress resistance. AP2/ERF transcription factors play a key role in plant growth and development. In this study, 148 AP2/ERF genes were identified in quinoa, which were divided into 5 subfamilies, including ERF, AP2, DREB, RAV and Soloist. The results showed that the number of introns ranged from 0 to 11, and the Motif 1-Motif 4 was highly conserved in most CqAP2/ERF proteins. The 148 CqAP2/ERF genes were distributed on 19 chromosomes. There were 93 pairs of duplicating genes in this family, and gene duplication played a critical role in the expansion of this family. Protein-protein interaction indicated that the proteins in CqAP2/ERF subfamily exhibited complex interactions, and GO enrichment analysis indicated that 148 CqAP2/ERF proteins were involved in transcription factor activity. In addition, CqAP2/ERF gene contains a large number of elements related to hormones in promoter region (IAA, GA, SA, ABA and MeJA) and stresses (salt, drought, low temperature and anaerobic induction). Transcriptome analysis under drought stress indicated that most of the CqAP2/ERF genes were responsive to drought stress, and subcellular localization indicated that CqERF24 was location in the nucleus, qRT-PCR results also showed that most of the genes such as CqERF15, CqERF24, CqDREB03, CqDREB14, CqDREB37 and CqDREB43 also responded to drought stress in roots and leaves. Overexpression of CqERF24 in Arabidopsis thaliana enhanced drought resistance by increasing antioxidant enzyme activity and activation-related stress genes, and the gene is sensitive to ABA, while silencing CqERF24 in quinoa decreased drought tolerance. In addition, overexpression of CqERF24 in quinoa calli enhanced resistance to mannitol. These results lay a solid foundation for further study on the role of AP2/ERF family genes in quinoa under drought stress.


Chenopodium quinoa , Chenopodium quinoa/genetics , Droughts , Gene Duplication , Gene Expression Profiling/methods , Introns , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant
10.
Drugs Aging ; 40(10): 881-893, 2023 10.
Article En | MEDLINE | ID: mdl-37594718

BACKGROUND: Managing hypertension in frail older patients is challenging. Several institutions and organizations have published up-to-date hypertension guidelines suggesting frailty screening among older hypertensive patients, with new recommendations for blood pressure-lowering treatment among the frail population. However, the quality of current hypertension guidelines and the consistency of antihypertension treatment recommendations for frail older patients and their supporting evidence remain unknown. OBJECTIVE: In this review, we aimed to systematically collect guidelines with antihypertension treatment recommendations for frail older patients, examine and compare these recommendations, and critically assess reporting and methodology quality of these guidelines. METHODS: A literature search was conducted on two databases and three major websites of guideline development organizations. The AGREE instrument and RIGHT checklist were used to evaluate the methodology and reporting quality of the guidelines, respectively. The consistency of recommendations within the guidelines were compared using descriptive analysis. RESULTS: We identified 13 hypertension guidelines. The overall methodology quality scores (range 23.35-79.07%) and reporting rates (range 10/35-29/35) varied among these guidelines. Four guidelines provided an explicit definition of frailty. Considering treatment tolerability or increased likelihood of adverse effects while using pharmacotherapy in frail older patients was mentioned in all guidelines. Ten guidelines recommended adjusting blood pressure targets or specific pharmacotherapy programs. Four guidelines recommended using clinical judgment when prescribing. However, the specific recommendations lacked clarity and unity without sufficient evidence. CONCLUSIONS: There were considerable variations in methodology and reporting quality across the 13 included hypertension guidelines. Furthermore, the depth and breadth of antihypertension treatment recommendations for frail older patients were varied and inconsistent. Further trials exploring optimal treatment are urgently required to promote the development of specific guidelines for managing frail older hypertensive patients.


Frailty , Hypertension , Aged , Humans , Blood Pressure , Databases, Factual , Frail Elderly , Frailty/drug therapy , Hypertension/drug therapy , Practice Guidelines as Topic
11.
J Ethnopharmacol ; 314: 116570, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37187360

ETHNOPHARMACOLOGICAL RELEVANCE: Qishen Yiqi Pills (QSYQ) is a classical herbal formula for treating heart failure (HF) and has potential efficacy in improving cognitive function. The latter is one of the most common complications in patients with HF. However, there is no study on treating HF-related cognitive dysfunction by QSYQ. AIMS OF THE STUDY: The study aims to investigate the effect and mechanism of QSYQ on treating post-HF cognitive dysfunction based on network pharmacology and experimental validation. MATERIALS AND METHODS: Network pharmacology analysis and molecular docking was used to explore endogenous targets of QSYQ in treating cognitive impairment. Ligation of the anterior descending branch of the left coronary artery and sleep deprivation (SD) were used to induce HF-related cognitive dysfunction in rats. The efficacy and potential signal targets of QSYQ were then verified by functional evaluation, pathological staining, and molecular biology experiments. RESULTS: 384 common targets were identified by intersecting QSYQ 'compound targets' and 'cognitive dysfunction' disease targets. KEGG analysis showed these targets were enriched to the cAMP signal, and four marks responsible for regulating the cAMP signal were successfully docked with core compounds of QSYQ. Animal experiments demonstrated that QSYQ significantly ameliorated cardiac function and cognitive function in rats suffering from HF and SD, inhibited the reduction of cAMP and BDNF content, reversed the upregulation of PDE4 and downregulation of CREB, suppressed the loss of neurons, and restored the expression of synaptic protein PSD95 in the hippocampus. CONCLUSION: This study clarified that QSYQ could improve HF-related cognitive dysfunction by modulating cAMP-CREB-BDNF signals. It provides a rich basis for the potential mechanism of QSYQ in the treatment of heart failure with cognitive dysfunction.


Cognitive Dysfunction , Drugs, Chinese Herbal , Heart Failure , Rats , Animals , Molecular Docking Simulation , Brain-Derived Neurotrophic Factor , Network Pharmacology , Heart Failure/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Cognitive Dysfunction/drug therapy , Cognition
12.
Acta Pharm Sin B ; 13(5): 1919-1955, 2023 May.
Article En | MEDLINE | ID: mdl-37250151

Chronic heart failure (CHF) is a severe public health problem with increasing morbidity and mortality, any treatment targeting a single session is insufficient to tackle this. CHF is characterized by reduced cardiac output resulting from neurohumoral dysregulation and cardiac remodeling, which might be related to oxidative stress, inflammation, endoplasmic reticulum stress, apoptosis, autophagy, mitochondrial function, and angiogenesis. These molecular mechanisms interact with each other through crosstalk. Historically, Chinese medicinal herbs have been widely applied in the treatment of CHF, and therapeutic effects of Chinese medicinal herbs and their ingredients have been scientifically confirmed over the past decades. Traditional Chinese medicine (TCM) with multiple components can confront the different pathogenesis of CHF through multiple targets. This review analyzes commonly used TCM patent drugs and TCM decoctions that are applicable to different stages of CHF based on clinical trials. Diverse bioactive ingredients in Chinese medicinal herbs have been found to treat CHF via multiple molecular mechanisms. This review comprehensively covers the key works on the effects and underlying mechanisms of TCM, herbal ingredients and synergistic effects of constituent compatibility in treating CHF, providing additional ideas to address this threat.

13.
J Food Prot ; 86(6): 100099, 2023 06.
Article En | MEDLINE | ID: mdl-37149091

California Leafy Green Products Handler Marketing Agreement (LGMA) established food safety metrics with guidance recommendations of 366 m (1,200 feet) and 1,609 m (1 mile) distances between production fields of leafy greens and a concentrated animal feeding operation (CAFO) containing >1,000 and >80,000 head of cattle, respectively. This study evaluated the effect of these distance metrics and environmental factors on the occurrence of airborneEscherichia coliin proximity to seven commercial beef cattle feedlots located in Imperial Valley, California. A total of 168 air samples were collected from seven beef cattle feedlots during March and April 2020, which were the months implicated in the 2018 Yuma Arizona lettuce outbreak of E. coli O157:H7. The distance between air sampling sites and the edge of the feedlot ranged from ∼0 to ∼2,200 m (∼1.3 mile), with each sample comprised of 1,000 L of processed air taken at a 1.2 m elevation over a 10-minute duration. E. colicolonies were enumerated on CHROMagar ECC selective agar and confirmed with conventional PCR. Meteorological data (air temperature, wind speed, wind direction, relative humidity) were collectedin situ. The prevalence and mean concentration ofE. coliwere 6.55% (11/168) and 0.09 CFU per 1,000 L of air, with positive samples limited to within 37 m (120 ft) of the feedlot.Based on logistic regression, the odds of airborne E. coli detection were associated with little to no wind and close proximity to a feedlot. This pilot study found limited dispersal of airborne E. coli in proximity to commercial feedlots in Imperial Valley, with light-to-no wind and proximity within 37 m of a feedlot significant factor-associated airborne E. coli in this produce-growing region of California.


Cattle Diseases , Escherichia coli Infections , Escherichia coli O157 , Cattle , Animals , Escherichia coli Infections/epidemiology , Pilot Projects , Feces , Risk Factors , Cattle Diseases/epidemiology
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220163, 2023 06 19.
Article En | MEDLINE | ID: mdl-37122215

Atrial fibrillation (AF) is frequently associated with ß-adrenergic stimulation, especially in patients with structural heart diseases. The objective of this study was to determine the synergism of late sodium current (late INa) and Ca2+/calmodulin-dependent protein kinase (CaMKII)-mediated arrhythmogenic activities in ß-adrenergic overactivation-associated AF. Monophasic action potential, conduction properties, protein phosphorylation, ion currents and cellular trigger activities were measured from rabbit-isolated hearts, atrial tissue and atrial myocytes, respectively. Isoproterenol (ISO, 1-15 nM) increased atrial conduction inhomogeneity index, phospho-Nav1.5 and phospho-CaMKII protein levels and late INa by 108%, 65%, 135% and 87%, respectively, and induced triggered activities and episodes of AF in all hearts studied (p < 0.05). Sea anemone toxin II (ATX-II, 2 nM) was insufficient to induce any atrial arrhythmias, whereas the propensities of AF were greater in hearts treated with a combination of ATX-II and ISO. Ranolazine, eleclazine and KN-93 abolished ISO-induced AF, attenuated the phosphorylation of Nav1.5 and CaMKII, and reversed the increase of late INa (p < 0.05) in a synergistic mode. Overall, late INa in association with the activation of CaMKII potentiates ß-adrenergic stimulation-induced AF and the inhibition of both late INa and CaMKII exerted synergistic anti-arrhythmic effects to suppress atrial arrhythmic activities associated with catecholaminergic activation. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Atrial Fibrillation , Animals , Rabbits , Atrial Fibrillation/chemically induced , Atrial Fibrillation/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Adrenergic Agents/metabolism , Adrenergic Agents/pharmacology , Sodium/metabolism , Heart Atria/metabolism , Action Potentials , Calcium/metabolism
15.
Arch Biochem Biophys ; 741: 109596, 2023 06.
Article En | MEDLINE | ID: mdl-37030589

OBJECTIVE: Preeclampsia (PE) is a maternal multisystem disease with an unclear mechanism. Data showed that MiR-95-3p promoted cell migration, invasion and proliferation, leading to the occurrence and development of many cancers, and placental trophoblasts and tumor cells had similar migration, invasion and proliferation abilities. Meanwhile we found that MiR-95-3p was differentially expressed in PE and normal placenta. Therefore, this article aimed to explore the biological function and mechanism of miR-95-3p in PE. METHODS: The expression of miR-95-3p in PE and normal placental tissue was explored by high-throughput sequencing and qRT-PCR. The effects of miR-95-3p on trophoblast migration, invasion, proliferation, angiogenesis and apoptosis were investigated by Transwell migration and invasion assays, cell viability assay, tube formation assay and flow cytometry in two trophoblast cell lines (HTR-8/SVneo and JAR). The miR-95-3p target gene EPM2A was identified and verified by unique identifier mRNA next-generation sequencing and dual-luciferase reporter gene experiments. Rescue experiments were conducted to investigate whether miR-95-3p regulated EPM2A to participate in trophoblast migration and invasion. Finally, the effects of miR-95-3p and EPM2A on the expression of angiogenic factors and inflammation-related factors were investigated by ELISA. RESULTS: We found that miR-95-3p was expressed at low levels in the placental tissue of patients with PE and was negatively correlated with EPM2A expression. In vitro upregulation of miR-95-3p and downregulation of EPM2A promote trophoblast migration, invasion and proliferation. Furthermore, EPM2A was confirmed as a target mRNA of miR-95-3p. Upregulation of EPM2A mitigated miR-95-3p-mediated promotion of trophoblast migration and invasion and vice versa. Finally, both miR-95-3p and EPM2A regulate the expression of trophoblast angiogenesis-related factors and inflammation-related factors. CONCLUSION: Our findings demonstrated that miR-95-3p promoted the migration and invasion of trophoblast cells by targeting EPM2A to inhibit the occurrence and development of PE.


MicroRNAs , Pre-Eclampsia , Trophoblasts , Female , Humans , Pregnancy , Cell Movement/genetics , Cell Proliferation/genetics , Matrix Metalloproteinase 2/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Protein Tyrosine Phosphatases, Non-Receptor , RNA, Messenger/metabolism , Trophoblasts/metabolism
16.
Zhongguo Zhong Yao Za Zhi ; 48(3): 614-624, 2023 Feb.
Article Zh | MEDLINE | ID: mdl-36872224

Chronic heart failure(CHF) is a series of clinical syndromes in which various heart diseases progress to their end stage. Its morbidity and mortality are increasing year by year, which seriously threatens people's life and health. The diseases causing CHF are complex and varied, such as coronary heart disease, hypertension, diabetes, cardiomyopathy and so on. It is of great significance to establish animal models of CHF according to different etiologies to explore the pathogenesis of CHF and develop drugs to prevent and treat CHF induced by different diseases. Therefore, based on the classification of the etiology of CHF, this paper summarizes the animal models of CHF widely used in recent 10 years, and the application of these animal models in traditional Chinese medicine(TCM) research, in order to provide ideas and strategies for studying the pathogenesis and treatment of CHF, and provide ideas for TCM modernization research.


Heart Diseases , Heart Failure , Animals , Medicine, Chinese Traditional , Chronic Disease , Models, Animal
17.
Acta Pharm Sin B ; 13(2): 754-764, 2023 Feb.
Article En | MEDLINE | ID: mdl-36873186

A chemical investigation on the aqueous extract of Corydalis yanhusuo tubers led to the isolation and structural elucidation of three pairs of trace enantiomeric hetero-dimeric alkaloids, (+)/(-)-yanhusamides A-C (1-3), featuring an unprecedented 3,8-diazatricylco[5.2.2.02,6]undecane-8,10-diene bridged system. Their structures were exhaustively characterized by X-ray diffraction, comprehensive spectroscopic data analysis, and computational methods. Guided by the hypothetical biosynthetic pathway for 1-3, a gram-scale biomimetic synthesis of (±)-1 was achieved in 3 steps using photoenolization/Diels-Alder (PEDA) [4+2] cycloaddition. Compounds 1‒3 exhibited potent inhibition of NO production induced by LPS in RAW264.7 macrophages. The in vivo assay showed that oral administration of 30 mg/kg of (±)-1 attenuated the severity of rat adjuvant-induced arthritis (AIA). Additionally, (±)-1 induced a dose-dependent antinociceptive effect in the acetic acid-induced mice writhing assay.

18.
Heart Surg Forum ; 26(1): E020-E026, 2023 Jan 11.
Article En | MEDLINE | ID: mdl-36856501

OBJECTIVES: Cardiopulmonary bypass (CPB) induces inflammatory homeostasis dysregulation, closely related to many postoperative adverse effects. Minimizing the systemic inflammatory response to CPB is imperative to improving cardiac surgery safety. This study aimed to retrospectively evaluate the efficacy of the hemoperfusion cartridge, a device recently designed for extracorporeal blood purification to remove cytokines from the blood for patients undergoing cardiac valve replacement surgery using CPB. METHODS: The hemoperfusion (HP) group consisted of 138 patients, who underwent a hemoperfusion cartridge procedure during CPB. The control group included 149 patients, who received standard CPB management. The evaluated indices included inflammatory cytokines, blood biochemical indices, and postoperative outcome indices. RESULTS: Patients in the HP group had relatively lower interleukin (IL)-6 levels (days one and two post-CPB) and IL-8 (day one post-CPB) compared with the control group. Some relatively decreased biochemical blood indices also were observed in the HP group, including a significantly lower lactic acid level (days one, two, and three post-CPB), platelet counts (days one, two, and three post-CPB), and aspartate aminotransferase (days one and three post-CPB). Regarding the postoperative outcomes, no severe complications occurred in the patients; however, the HP group required less ventilation time than the control group. CONCLUSIONS: The hemoperfusion cartridge seems promising in limiting the inflammatory reactions during CPB, with noteworthy potential for application in cardiac surgery.


Cardiac Surgical Procedures , Hemoperfusion , Humans , Cardiopulmonary Bypass , Retrospective Studies , Cytokines , Interleukin-6 , Heart Valves
19.
Phytomedicine ; 113: 154722, 2023 May.
Article En | MEDLINE | ID: mdl-36867964

BACKGROUND: XinLi formula (XLF) is a traditional Chinese medicine used in clinical practice to treat chronic heart failure (CHF) in humans, with remarkable curative effect. However, the mechanism remains unknown. PURPOSE: The goal of the current investigation was to determine how XLF affected CHF in a rat model of the condition brought on by ligation of the left anterior descending coronary artery, and to investigate the underlying mechanism. STUDY DESIGN AND METHODS: Cardiac function was detected by echocardiography. The contents of myocardial enzymes, Ang II, ALD, TGF-ß1, and inflammatory factors were measured by ELISA. Myocardial injury and myocardial fibrosis were evaluated by HE and Masson staining. Myocardial edema was assessed by cardiac mass index and transmission electron microscopy. Using Western blot and immunohistochemistry to examining the protein expression of inflammasome, TGF-ß1, AGTR1, and AQP1 in the left ventricle. Furthermore, the interaction of AGTR1 and AQP1 was evaluated by co-immunoprecipitation. RESULTS: XLF attenuated myocardial enzymes and myocardial injury, and improved cardiac function in rats with CHF after myocardial infarction. It also reduced Ang II and ALD levels in CHF rats, and suppressed the expression of AGTR1 and TGF-ß1, finally alleviated myocardial fibrosis. By mechanism, XLF inhibited the expression of NLRP3 inflammasome proteins, reduced the plasma contents of IL-1ß, IL-18, IL-6 and TNF-α. Additionally, XLF inhibited the expression of AQP1 and the interaction of AGTR1 and AQP1, alleviating myocardial edema. The common structure of the main chemical constituents of XLF were glycoside compounds with glycosyl. CONCLUSION: XLF ameliorated CHF, which was evidenced by the alleviation of myocardial fibrosis by inhibiting AGTR1/NLRP3 signal, as well as the attenuation of myocardial edema by suppressing the interaction of AGTR1 and AQP1.


Cardiomyopathies , Drugs, Chinese Herbal , Heart Failure , Humans , Rats , Animals , Transforming Growth Factor beta1/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Drugs, Chinese Herbal/therapeutic use , Myocardium/metabolism , Heart Failure/metabolism , Cardiomyopathies/metabolism , Fibrosis , Aquaporin 1/metabolism , Receptor, Angiotensin, Type 1/metabolism
20.
Microorganisms ; 11(2)2023 Feb 06.
Article En | MEDLINE | ID: mdl-36838376

This study characterized the effect of distance from beef cattle feedlots, environmental factors, and climate on the occurrence of airborne bacterial indicators and pathogens. Three hundred air samples were collected over 6 months from five feedlots, with each air sample comprising 6000 L of air. Air samples were processed onto TSB-enriched air filters, qPCR-screened, and then qPCR-confirmed for suspect positive colonies of E. coli O157, non-O157-Shiga-toxin-producing E. coli (STEC), Salmonella, and E. coli. Direct enumeration of E. coli was also collected. Although no bacterial pathogens were qPCR-confirmed for the 300 samples, E. coli was detected in 16.7% (50/300) of samples, with an overall mean concentration of 0.17 CFU/6000 L air. Logistic regression analyses revealed a higher odds of E. coli for samples in close proximity compared to >610 m (2000 ft) distance from feedlots, along with significant associations with meteorological factors, sampling hour of day, and the presence of a dust-generating activity such as plowing a field or nearby vehicular traffic. The lack of bacterial pathogen detection suggests airborne deposition from nearby feedlots may not be a significant mechanism of leafy green bacterial pathogen contamination; the result of our study provides data to inform future revisions of produce-safety guidance.

...